La pirámide de Keops, ¿coronada por una esfera?

Reconstrucción de la pirámide, con la esfera en la cúspide.

 

Vía:
EL MUNDO.es | EFE| 21 de mayo de 2012

 

Las investigaciones del arquitecto catalán
 Miquel Pérez Sánchez durante más de diez años han permitido reconstruir por ordenador con gran exactitud la pirámide de Keops y determinar que estaba coronada por una esfera de más de dos metros.


 

Pérez Sánchez, que ha hecho de esta investigación su tesis doctoral, ha explicado hoy en la presentación del estudio que 
"del análisis de la pirámide se deduce que era una especie de enciclopedia del saber de su tiempo".

 

La Gran Pirámide, la edificación más importante del Reino Antiguo, fue construida durante el reinado de Khufu (-2550 a -2527), segundo faraón de la IV Dinastía, a quien
 Herodoto llamó Keops.

 

Fue 
la primera de las 7 Maravillas del Mundo Antiguo y la única que ha permanecido en pie, y en la actualidad se encuentra desprovista de su recubrimiento original de bloques de piedra caliza blanca y su cima ha perdido 9 metros de altura, por lo que hasta ahora no se conocía su forma exacta, asegura Pérez Sánchez.

 

La esfera que coronaba la pirámide, según la hipótesis de Pérez Sánchez, 
simbolizaba el Ojo de Horus y tenía un diámetro de 2,718 codos reales(2,7 metros), la medida del número e.

 

Añade que esta esfera de coronación estaba, a la vez, proporcionada con el Sol y con Sirio, la estrella más brillante del cielo, asociada a Isis.

 

Las investigaciones del arquitecto, que ha contado con el apoyo de un equipo pluridisciplinar, 
han permitido dibujar el monumento por ordenador con una exactitud de 4 decimales, lo que es
 "100 veces superior a la precisión habitual en arquitectura".

 

El dibujo tridimensional de la Gran Pirámide ha permitido descubrir sus medidas originales, analizarla y entender el significado histórico del monumento.

 


Precisión más que milimétrica

Pérez Sánchez ha explicado que, además de la esfera de coronación, hoy desaparecida, esta reconstrucción
 ha posibilitado conocer
"el ángulo de inclinación, de 51,84º; la plataforma de apoyo de la esfera, del perímetro pi en codos reales; y la altura del vértice piramidal, de 277.778 codos reales, igual al cociente de dividir 1.000.000 por 3.600".

 

A su juicio, el descubrimiento de la forma y medidas originales de la Gran Pirámide, y su reconstrucción y análisis, ha revelado
 "una arquitectura hecha de pura filigrana matemática y geométrica, geodésica y astronómica".

 

Los egipcios que idearon Keops tenían
 "conocimientos científicos insospechados, entre los que cabe destacar el uso del Teorema de Pitágoras dos milenios antes del sabio de Samos, una precisión en la definición del número pi con 6 decimales que se adelantó en 3 milenios, así como el conocimiento del número e y de las medidas de la Tierra, el Sol y Sirio que se anticiparon en más de 4 milenios".

 

La dependencia geodésica de la Gran Pirámide ha sido confirmada por relaciones de escala basadas en el sistema sexagesimal: el meridiano terrestre puede obtenerse como 43.200 veces el perímetro del zócalo en contacto con la tierra; el radio polar, como 43.200 veces la altura total del monumento, y el perímetro medio de la Tierra, como 21.600 veces el perímetro total del zócalo".

 

Los datos astronómicos aportados por 
Plutarco han permitido situar el monumento en su contexto histórico:
 "En la Gran Pirámide, el faraón Khufu, al tiempo que construyó su tumba, edificó un cenotafio conmemorativo del Milenario del Diluvio en homenaje a sus antepasados muertos".


Este hecho explica la causa de que Snefru, el padre de Khufu, construyera durante su reinado tres pirámides en busca de la pirámide perfecta:

"Tenía una cita con la historia y este hecho explica el esfuerzo de los arquitectos de Khufu para incluir dentro de la Gran Pirámide los conocimientos del pasado".

---------------------------------------------------------------------------------------------------------


Miquel Pérez-Sánchez: "La pirámide de Keops conmemora el diluvio universal"

 

Vía:
 LA VANGUARDIA | Silvia Colomé | 21 de mayo de 2012



El arquitecto Miquel Pérez-Sánchez presenta su tesis en una serie de conferencias en el CSIC

 

 

Si hay un monumento en la tierra que ha levantado la admiración de cuántas civilizaciones lo han contemplado, este es, sin duda, la
 Gran Pirámide de Guiza, la única de las siete maravillas de la antigüedad que todavía se alza majestuosa a pesar de los contratiempos que ha sufrido a lo largo de los milenios. Por ejemplo, ha perdido su revestimiento original e incluso el vértice que la culminaba.  El arquitecto
 Miquel Pérez-Sánchez ha puesto fin a estos agravios reconstruyendo informáticamente la que fuera la última morada del faraón Keops. Pero su tesis doctoral va mucho más allá de recuperar la forma original del monumento, también desarrolla una serie de teorías cuanto menos, sorprendentes.



-Se han hecho varias recreaciones en 3D de la Pirámide de Keops. ¿Qué aporta la suya?
-Hasta ahora se han hecho recreaciones ideales y esta es una recreación en su medida exacta. Y puedo decir que es exacta porque la propia pirámide certifica la reconstrucción.


-¿Cómo?
-A través de las leyes matemáticas. La primera confirmación fue que la superficie de la pirámide es 100.000 veces el número Pi en la unidad de medida que ellos utilizaban, el codo real. Eso significa que avanzaron en 3.000 años la definición del número Pi, y en una exactitud de seis decimales, cosa que no se consigue hasta el 500 d. C en China. Y la Gran Pirámide es del 2.500 a.C. Quise analizar a fondo todas sus medidas por si aportaban datos científicos.


-¿Y los aportan?
-Sí, y muchos. Es una pirámide muy singular porque empieza por tener un zócalo que da su unidad de medida, el codo real: 0,5236 metros.


-Era la medida habitual en las obras faraónicas…
-Efectivamente, pero es la única pirámide con zócalo y de un codo real. Otra peculiaridad: Las cuatro caras que definen la pirámide no son lisas. Su eje está un poco introducido para dentro, de tal manera que las apotemas están hundidas. No tiene cuatro caras triangulares, sino ocho semicaras triangulares, aunque las apotemas rehundidas presentaban un problema geométrico.


-¿Cúal?
-Hasta ahora se había definido que la base tenía 440 codos reales y la altura 280 más uno del zócalo. Estos 281 codos están proporcionados con la distancia del Sol en el perihelio, es decir, en el momento en que está más cercano a la Tierra. Mide 147,134 metros y la distancia al Sol en el perihelio es poco más de 147 millones de kilómetros. Multiplica la altura de la pirámide por 1.000 millones y…


-…llegamos al Sol. ¿No puede ser una casualidad?
-Podría serlo, pero curiosamente eso ya se sabía en la mitología asociada a la pirámide, la voz que nos llega del pasado.


-¿Qué más dice esa voz?
-En la reconstrucción, como que los ejes de las caras están ligeramente rehundidos, se producía una contradicción con las medidas hasta ahora aceptadas. La hilada de recubrimiento que ha quedado en la cara norte nos da con mucha aproximación la inclinación que tenía. Si la aplicamos, no llegamos arriba, nos quedamos cortos, no llegamos a la altura de 280 codos más uno. Eso me hizo pensar que quizás faltaba en la pirámide una coronación.


-El piramidón, ¿no?
-Sí, pero es que hasta ahora eran piramidales, por lo que hubiera tenido la misma inclinación y no se resolvía el problema de la falta de altura. Lo que estaría coronando la pirámide tenía que ser algo distinto, algo sobrepuesto. Pensando que las aristas de las pirámides representan los rayos pétreos del Sol, pensé que tal vez lo que había arriba era un símbolo del Sol, una forma esférica, una esfera.


-¿Lo ha podido verificar?
-Como en el vértice de la pirámide había una relación con el número e, la base de los logaritmos neperianos, pensé que el diámetro de la esfera podría ser 
e. Hice la simulación y me di cuenta de que el perímetro en codos reales de la plataforma que trunca la pirámide en su parte superior era el número Pi. Eso me confirmó la hipótesis de trabajo. Además, la altura del vértice me salía muy próxima al cociente de dividir un millón por 3.600. Para los egipcios, el millón era el número del infinito, y 3.600 son los segundos de una hora y un grado. Podría representar lo infinitamente grande y lo infinitamente pequeño.


-Vaya.
-Era una hipótesis de trabajo, pero no tuve la certeza hasta que medí la dimensión del monumento, y resultó ser 100.000 veces el número Pi. Eso ya me dio la pista de que íbamos por el buen camino y que la reconstrucción estaba realizada, pero el monumento me ofreció otra comprobación.


-¿Cuál?
-La suma en codos reales de la superficie, el volumen y el perímetro de la Gran Pirámide nos da un múltiplo de 888. Por otra parte, extrañamente, el monumento parecía tener medidas en metros, lo que es difícilmente explicable. Se me ocurrió hacer la transformación de codos reales a metros a través del número Phi, la proporción áurea, lo que permite una transformación absolutamente exacta entre ambas unidades. Y la suma de la superficie, el volumen y el perímetro en metros lo confirmó al repetir la ley del 888.


-¿Y qué simboliza el 888? Suerte que no es el 666…
-El análisis del 888 nos lleva seguramente a entender que lo del 666 es un mito, como tantas cosas que nos llegan de la antigüedad. No he encontrado a nadie que me sepa explicar esta ley a nivel matemático. El dios único se oculta tras el 888. Es un tema complejo y apasionante. Utilizaron el 888 como confirmación del espacio y el tiempo del monumento.


-¿El tiempo?
-La Gran Pirámide tiene cuatro canales estelares que salen dos en dirección al norte y dos en dirección al sur de la Cámara del Rey y de la Cámara de la Reina. Dos alineaciones de Marte con los canales estelares del sur han permitido fijar con total exactitud las fechas inicial y final de la Gran Pirámide. Dentro del reinado de Keops vemos, a tres años del inicio, una alineación de Marte con uno de los canales, y unos tres años antes del final del reinado, se produce la otra. Las conclusiones nacen cuando ves que la distancia temporal que hay entre una y otra es de 6.216 días, y esto es 7 veces 888.


-¿Las alineaciones no podrían señalar otras cosas que no fueran el inicio y final de la construcción?
-No estábamos allí para fotografiarlo, pero ¿qué dirías que podrían indicar si no?


-Por ejemplo, el nacimiento de Keops.
-Eso podría ser si estuviéramos ante un monumento funerario, pero tiene una trascendencia muy superior.


-¿Cuál?
-Si te digo que este monumento conmemora el milenario de un gran cataclismo, ¿qué me dirás? La fecha inaugural son 1.000 años astronómicos de 365,25 días y la del inicio, 983 años solares, de 365,2422 días. Plutarco dice que la muerte de Osiris, que los egipcios celebraban con cuatro días de duelo, se produjo el 17 de athyr, y nos sitúa la posición del Sol en las constelaciones y nos describe la fase en que se halla la Luna. Con un avanzado programa informático de astronomía vi que unas de las fechas en las que se cumplían los datos de Plutarco, era exactamente 1.000 años antes del día señalado por el canal que fijaba el final de las obras.


-¿Y qué pudo haber pasado 1.000 años antes de la construcción?
-Muy probablemente se trate del llamado diluvio universal. La mitología del génesis egipcio es diluvial. Y en un templo se explica que el saber de Egipto proviene de siete sabios originarios de una tierra en la que todos sus habitantes murieron por una inundación repentina. Este tema ligaría con el mito de Osiris, un semidios extranjero que trajo la agricultura y que fue el primer faraón en unificar el Alto y el Bajo Egipto.


-¿Pero ese no fue el rey Escorpión?
-Son mitos paralelos, en algunos momentos puede fundirse entre ellos, aunque el mito de Osiris sea anterior.


-En el año 3.500 a.C. estamos en el período de Naqada II, en el pleno predinástico egipcio, y no se han encontrado evidencias de diluvios…
-Puede ser, pero no está claro que el diluvio fuera universal. Desde el punto de vista arqueológico no se han encontrado restos de un diluvio que lo cubriera todo.


-¿La teoría es que Osiris era una persona de otra civilización coetánea con el período de Naqada?
-Efectivamente. Y una persona o la personificación de un pueblo.




-¿Y qué es la pirámide de Keops?
-El monumento conmemorativo de una gran destrucción, del diluvio universal, de su milenario. El padre de Keops, Snefru, construyó tres pirámides. La primera, la de Meidum, inicialmente era una pirámide escalonada, y al final de su reinado, después de haber construido dos pirámides en Dashur, la recubrieron con la misma inclinación que la Gran Pirámide: 51,84º. Parece, pues, como que estuvieran ensayando para conseguir la pirámide perfecta, como si tuvieran una cita con la historia.


-Vaya.
-El nombre oficial del monumento es El Horizonte de Keops. Cuando calculas el círculo del horizonte visible a partir de la curvatura de la Tierra desde la esfera que lo corona —que simbolizaría el Ojo de Horus o Udyat—, su radio es 43.200, en metros, un número que corresponde a los segundos de 12 horas. Y su diámetro, 86.400, los segundos de un día. La pirámide está ligada al 432 por varios elementos. Según nuestro estudio, el monumento tiene 99 hiladas. Si calculas la longitud de estas hiladas, ¿sabes qué te da en codos reales?




-¿888?
-No. 86.400.


-Los segundos del día.
-Sí. La esfera de coronación representa el Sol, por lógica simbólica. La suma de las inclinaciones de cada apotema es 432 por 432 segundos de arco, lo que multiplicado por las cuatro apotemas, da 864 por 864. Por tanto, el número solar está al menos repetido tres veces: en la inclinación, en la medida de las hileras y en el diámetro del Horizonte de Keops.


-¿Por qué las otras pirámides no se hicieron siguiendo estas medidas?
-Porque hablamos de una pirámide simbólica, una especie de enciclopedia pétrea que pretendía fundir el saber del pasado. El conocimiento que se encuentra en la Gran Pirámide es enciclopédico.


-¿Qué nos enseña esta enciclopedia?
-Que conocían el número Pi, el Phi, el e, el plástico… Tenían conocimientos en matemáticas que nosotros no hemos alcanzado hasta el siglo XX, como es el caso del número plástico. En Astronomía conocían la precesión, las distancias de las estrellas… En geodesia, se sabían la Tierra de memoria, que era redonda, y algo excepcionalmente sorprendente: Puedo demostrar que tenían referenciada la Gran Pirámide respecto a un sistema de coordenadas geográficas, algo que nosotros no hicimos hasta el siglo XIX. El desconcierto es total. Hablamos de una civilización científica avanzada en el 2.500 a.C.




-¿Qué dicen los egiptólogos de su teoría?
-Estamos empezando a hablar. Los descubrimientos realizados no hubieran sido posibles sin 200 años de investigación egiptológica sobre el Antiguo Egipto, sin los ordenadores que permiten utilizar hojas de cálculo y sin los programas astronómicos que reconstruyen el cielo del pasado. Esta investigación es deudora de su tiempo, pero no resuelve todos los enigmas de la Gran Pirámide, al revés, abre enigmas nuevos.

-¿Cómo cuáles?
-¿Cómo lo hicieron, utilizando los números, ni que sea como unidades abstractas, para introducir tal cantidad de información matemática, geométrica, astronómica y geodésica en el monumento? La capacidad combinatoria es desconcertante. Hay tantas interrelaciones que es imposible pensar que sean fruto de la casualidad.


-Y yo que pensaba que el misterio de la Gran Pirámide estaba en su interior…
- El interior sigue siendo un misterio.


Load Previous Comments
  • Guillermo Caso de los Cobos

    La Universidad Politécnica y el Ateneo de Madrid apadrinan un libro...

    Fuente:magonia.com | 18 de abril de 2015

    La Universidad Politécnica de Madrid (UPM) y el Ateneo de esa ciudad apadrinarán el martes la presentación de La Gran Pirámide, clave secreta del pasado, libro en el que el arquitecto catalán Miquel Pérez-Sánchez sostiene que la tumba del faraón Keops es “el monumento conmemorativo de una gran destrucción, del Diluvio Universal, de su milenario” y “una especie de enciclopedia del saber de su tiempo”. El trabajo es, según su autor, producto de 12 años de estudios, y obtuvo con él en 2008 el doctorado por la Universidad Politécnica de Cataluña (UPC).

    Según egiptólogos consultados, “no hay nada cierto en lo que dice Miquel Pérez-sánchez” , Mara Castillo Mallén, (derecha) y la síntesis que publicó en su día del trabajo “no tiene desperdicio en cuanto a la cantidad de tonterías y sinsen... (José Miguel Parra). Pérez-Sánchez se jacta de haber reconstruido “por primera vez” el monumento en su forma original y sostiene que estaba coronado por una esfera en honor a Horus, idea que, como el resto de las postuladas por él, carece de base documental.

    Parra, quien considera el libro un conjunto de “gilipolleces piramidales”, destacaba en su día cómo las tesis del arquitecto catalán se fundamentabana en las de “John Taylor, el creador de la piramidiotología; el primero en inventarse que la Gran Pirámide estaba llena de información oculta. Lo bueno es que al afirmarlo se descalifica a sí mismo, y con ello todos sus supuestos descubrimientos, porque desde nada menos que 1893 se sabe que lo de Taylor no eran más que patrañas inventadas por un iluminado”.

    Pérez-Sánchez, que carece de formación académica en historia, vende desde hace semanas su obra en una web que ha creado al efecto y que está subvencionada por el Ministerio de Cultura. Al mismo José Ignacio Wert que practica todo tipo de recortes en el sistema educativo español no le duelen prendas a la hora de destinar dinero público a la difusión de la obra de un piramidiota, como se conoce desde hace décadas a quienes sostienen bobadas anticientíficas sobre la Gran Pirámide, desde que fue construida por extraterrestres hasta que es la clave de un saber oculto. Tonterías que, en la mayoría de los casos, parte de un presupuesto racista: que algunos pueblos de la Antigüedad fueron incapaces de levantar sus grandes monumentos sin la ayuda de alienígenas y atlantes. Ahora, la UPM y el Ateneo de Madrid se suman al festival de tergiversación de la historia protagonizado por Pérez-Sánchez con dos actos de cuya celebración me he enterado gracias a un colega del Círculo Escéptico.

    A las 12 horas de martes, el arquitecto Carlos Ferratier, catedrático de la UPC y miembro de la Real Academia de Bellas Artes de Sant Jordi, y el arqueólogo Fernando Vela, subdirector de la Escuela Técnica Superior de Arquitectura de Madrid (ETSAM), presentarán el libro de Pérez-Sánchez en el Ateneo de Madrid. Y, a las 16 horas, lo harán en la ETSAM los arquitectos José Miguel Merino y Guillermo Cabeza.

    El Gobierno de España, dos universidades y una institución cultural de prestigio avalan disparates que firmarían Erich von Däniken y Juan José Benítez. Ésta es la España en la que vivimos, señores.

  • Guillermo Caso de los Cobos

    Trilero matemático

    Fuente: gluonconleche.blogspot.com.es| 18 de abril de 2015

    Al igual que un trilero se dedica a mover cubiletes para esconder una bolita donde más le interesa, existen trileros de los números que los mueven a su antojo hasta conseguir el resultado que más les conviene.

    Cualquiera puede hacerlo con un poco de imaginación para llegar a resultados tan sorprendentes como inútiles y sobre todo carentes de sentido. Pero son menos los que gracias a estas manipulaciones se sacan ni más ni menos que un doctorado en arquitectura, para vergüenza de la institución que se lo concede. Y para vergüenza de las instituciones que posteriormente ayudan en la difusión, como el CSICel Ateneo de Madrid, la Universidad Politécnica de Madrid, o peor aún, el Ministerio de Educación y Cultura.

    Hablo del arquitecto Miquel Pérez-Sánchez, agraciado con un doctorado por la Universidad Politécnica de Cataluña con la tesis"La gran pirámide, clau secreta del passat". Una tesis calificada de gilipollez desde el punto de vista histórico y arqueológico, y que desde el punto de vista matemático, se puede calificar del juego de los trileros.

    Todos hemos oído ya más de una vez los típicos juegos de números con la base, perímetro, altura, área de la gran pirámide... para encontrar la distancia Tierra-Sol, π, o cualquier otro número aparentemente relevante. Sin embargo, creo que el Dr. Pérez-Sánchez va un paso más allá. No vamos a ver todas y cada una de las afirmaciones del Dr. Pérez-Sánchez (que son muchas), sino que me voy a centrar en una de las que me ha parecido más delirante por toda la manipulación numérica que lleva. Tranquilos, que no hace falta ser ni Einstein ni John Nash para entenderlo. Sólo hace falta saber hacer las operaciones matemáticas más básicas, y un poquito de geometría. En todo caso, también es necesario olvidarse de por qué hay que hacer tales operaciones, y realizarlas al tuntún. Suspender el pensamiento crítico, en una palabra.

    Pues al parecer, los egipcios conocían el Monte Everest. No sólo eso, sino que además sabían que era la montaña más alta de la Tierra y que por tanto, es el punto natural desde donde referenciar la posición de cualquier punto en la Tierra, pero sólo en longitud. Para la latitud podemos seguir usando el ecuador.

    Así de entrada ya plantea muchos problemas esta afirmación, pues ¿acaso conocían los egipcios todas las montañas del mundo? ¿y además sabían como medir su altura respecto a un nivel de referencia definido a nivel global, como es el nivel medio del mar que usamos nosotros hoy en día?. Pero lo que vamos a ver es la prueba matemática que ¿lleva? a tal conclusión, y que se puede leer en la segunda mitad de este texto.

    Las coordenadas del Monte Everest son 27º 59’ 18,09” N y 86º 55’ 30,73” E, que en el sistema decimal resultan ser 27,988358º N y 86,925203º E

    Como la medida del meridiano es 40.007,832 km, y la del ecuador, 40.075,017 km, y como la distancia entre meridianos, medida sobre los paralelos, es proporcional al coseno de la latitud, resulta que las coordenadas de la Gran Pirámide referidas al ecuador y al meridiano del Monte Everest, expresadas en un número entero de km, serían: latitud norte 3.332 km, longitud oeste 5.380 km.

    Estos dos números forman una terna pitagórica, ya que 5.3802 – 3.3322 = 4.2242.
    [Las coordenadas de la gran pirámide que usa el Dr. Pérez-Sánchez son 29º 58' 45,02'' N (29,9791722º); 31º 08' 03,14'' E (31,134221º)]

    Las cuentas, tal cual, las operaciones matemáticas en sí mismas son correctas. La distancia (d) sobre una circunfernencia se calcula como d=R·θ, siendo R el radio, y θ el ángulo en radianes entre los dos puntos.

    Calculemos la distancia de la gran pirámide al ecuador, usando usa el radio polar de la Tierra:

    Rp=40.007,832/(2π)=6367,444 km

    Pasando la latitud de la gran pirámide a radianes, se obtiene:

    θ1=29,9791722º·π/180=0,523235262 rad.

    Y finalmente, la distancia lineal al ecuador en km es

    d1=Rp·θ1=3.331,671 km, que redondeado al entero más cercano son 3.332 km.

    Por otro lado, para la distancia entre los meridianos de la gran pirámide y el Everest, primero necesitamos el radio del paralelo sobre el cual calculamos esta distancia. Que corresponde con el radio ecuatorial, corregido por el coseno de la latitud a la que estamos:

    Req=40.075,017/(2·π)·cos (29,9791722º)=5.524,788 km

    Ahora calculamos la diferencia angular entre las longitudes de ambos sitios, en radianes, por supuesto:

    θ2=(86,925203-31,134221)·π/180=0,973736329 rad,

    y finalmente la distancia entre ambos meridianos:

    d2=Req·θ2=5.379,686 km, que redondeado al km más cercano son 5.380 km.

    Con estos dos números y una calculadora, ahora es fácil comprobar que efectivamente, estos números son dos de un trío que pueden formar una "terna pitagórica", que es aquella que cumple A2+B2=C2, siendo A,B y C números enteros. En este caso, d1sería A o B, y d2 sería C. De forma que podemos calcular el tercer número en discordia como C2-A2=B2. Y efectivamente, el tercer número también resulta ser un entero:

    5.3802 – 3.3322 = 17.842.176, cuya raíz cuadrada es 4.224.

    Una terna pitagórica, que según el Dr. Pérez-Sánchez es prueba de que el Everest sirve como referencia objetiva para establecer la longitud 0º, frente a la referencia totalmente subjetiva y arbitraria de establecer la longitud 0º en el meridiano que pasa por Greenwich.

    Ahora la pregunta: ¿Cuántos movimientos de cubiletes han sido capaces de detectar? Sí, las cuentas son correctas. Pero en matemáticas, los números representan "cosas" que se relacionan entre ellas con un orden y una lógica. Siempre hay una razón para multiplicar, sumar o elevar a la enésima potencia uno o varios números, las operaciones no se hacen al tuntún, y más aún si detrás de ellos hay una unidad de medida (sean metros, radianes o megabytes).

    1. LA PRECISIÓN IMPRECISA

    Usamos una elevada precisión las coordenadas angulares, ni más ni menos que una centésima de arcosegundo, o 3·10-6grados, es decir, 3 partes por millón.

    Igual se puede decir de las distancias. El perímetro terrestre (polar y ecuatorial) se expresa con una precisión de metros para distancias de decenas de miles de kilómetros. Eso representa una precisión de una parte por diez millones (1·10-7).

    Pero al final redondeamos el resultado al número entero más cercano [en kilómetros], cargándonos toda esa precisión anterior, y dejándola en 1 parte entre mil (es decir, se reduce en un factor 1000)

    No vamos a entrar en si los egipcios eran capaces de posicionar con una precisión de 3 microgrados, cosa que se antoja harto imposible. Ahora bien, una vez escogida una precisión, lo lógico y normal es mantenerla hasta el final de los cálculos, y no cargársela por conveniencia al final del proceso para dejar una cantidad en kilómetros enteros. ¿Por qué kilómetros? ¿Por qué no usamos la precisión original de metros? Porque en ese caso (pasando las cantidades a metros para que sean números enteros):

    5.524.7882-3.331.6712=4.407.181,7292

    deja de ser una terna pitagórica porque no todos los números son enteros.

    Si el Dr. Pérez-Sánchez quiere usar el kilómetro como precisión de medida, entonces le hubiera bastado con establecer las posciones geográficas de la pirámide y el Everest con 0.5 minutos de arco, y hubiera encontrado las mismas relaciones. Lo que se traduciría en que la pirámide podría haber estado 500 metros más al Este, Oeste, Sur o Norte de donde está sin problemas, pero claro, se hubiera cargado el mito ese de la altísima precisión en la elección del lugar de construcción.

    2. PITÁGORAS, Y LOS NÚMEROS BAILARINES

    ¿Cual es el origen de las ternas pitagóricas? Obviamente, el teorema de pitágoras, ese que dice que la hipotenusa al cuadrado es la suma del cuadrado de los catetos.

    A2+B2=C2

    Es una relación básica en geometría, pues nos permite descomponer distancias (o vectores) en dos componentes que son perpendiculares entre sí, que indican dos direcciones del espacio. O al revés, teniendo las componentes, poder calcular la distancia (o magnitud del vector).

    Razonemos qué cálculos hemos realizado: Primero hemos calculado la distancia desde el paralelo donde se halla gran pirámide hasta el ecuador. Y luego la distancia desde el meridiano donde está la pirámide hasta el meridiano donde está el Everest. Es decir, hemos obtenido dos componentes perpendiculares, los dos catetos. De forma que d1 y d2 en realidad se corresponden con A y B, y no con A y C. Y en estas circunstancias, aún usando el tramposo redondeo a kilómetros, al calcular C:

    5.3802 + 3.3322 =40.046.624, cuya raíz cuadrada es 6.328,24 y deja de ser la mágica terna pitagórica.

    El Dr. Pérez-Sánchez mueve los números cual cubilete para colocarlos donde le interesa y conseguir la relación que busca. Si tenemos ademas en cuenta lo que nos dice él mismo en su web:

    el Teorema que lleva su nombre… ¿Lo inventó Pitágoras o lo aprendió de sus maestros egipcios después de pasar entre 10 y 20 años en el país del Nilo y de ser ungido sacerdote?

    Porque los antiguos egipcios habían de ser maestros en agrimensura, el arte de medir las tierras, porque cada año, después de la crecida del Nilo, habrían de volver a marcar los límites entre propiedades. Y el Teorema de Pitágoras lo que geométricamente nos ofrece es una suma de superficies.
    Si tenemos que dar por válido que los egipcios conocían lo que representa el teorema de Pitágoras (aunque lo llamaran de otra forma) y su utilidad, no tendrían por qué andar bailando números a lo loco para cuadrar relaciones matemáticas. Lo que tenemos en cambio, es un baile sin sentido de números del Dr. Pérez-Sánchez para obtener lo que le interesa, sin atender al significado de los números ni lo que representan.

    3. EUCLIDES SE RETUERCE DE DOLOR EN SU TUMBA

    Hay una característica del teorema de Pitágoras que de nuevo revela la inutilidad o sinsentido de los cálculos de Pérez-Sánchez. Porque el teorema de Pitágoras sólo se puede aplicar sobre geometría euclidiana, es decir, superficies planas. En superficies curvadas (y más concretamente en una esfera como la Tierra), de pronto las líneas paralelas se cortan en un punto, los ángulos de un triángulo no suman necesariamente 180º, y por supuesto, el teorema de Pitágoras no funciona como debe.

    La Tierra es una superficie esférica, curvada. Para distancias muy cortas, se puede hacer la aproximación de que la superficie es plana y usar la geometría euclidiana. Pero no lo es para las distancias que estamos contemplando en nuestro caso. De hecho, para calcular la distancia entre la pirámide y el ecuador, y la distancia al meridiano del Everest, hemos usadi el radio terrestre, y las coordenadas angulares (latitud y longitud). No hemos usado la geometría euclidiana para calcular la distancias d1 y d2.

    Por ese motivo carece totalmente de sentido apelar al teorema de Pitágoras, e introducir datos que se han obtenido de una superficie curvada. Es incoherente.

    4. ¿Y POR QUÉ NO EL OCÉANO ATLÁNTICO?

    Hemos usado el meridiano 86º 55’ 30,73” Este para hallar (muy tramposamente) una relación determinada. Pero, ¿qué hubiera pasado si hubiéramos usado el meridiano 24º 39' 24,34'' Oeste ? Que hubiéramos obtenido la misma relación numéricaque tanto le llama la atención al Dr. Pérez-Sánchez.

    ¿Y qué hay en ese meridiano? Nada. Sólo el océano Atlántico de Norte a Sur. Y (**tachán**) las islas de Cabo Verde. ¿Sorprendido? ¿No? Ya me lo imaginaba.

    Estamos hablando de todo un meridiano que va de Norte a Sur, es inevitable que pase por algún sitio en algún momento. En realidad, sólo hay que echarle imaginación al asunto y encontrar un punto al que le queramos dar la relevancia quesubjetivamente nosotros mismos queramos darle.

    Sí, por mucho que el Dr. Pérez-Sánchez quiera definir el Everest como referencia objetiva, en realidad es él mismo quien le está dando una relevancia a ese punto que no tiene por qué darle nadie más, cosa que yo también podría hacer con el meridiano 24º 39' 24,34'' Oeste.

    [modo cachondeo=on, recuerden la Ley de Poe]
    Es un meridiano que va por todo el Atlántico desde el Ártico al Antártico, pero el único terreno firme que cruza es Cabo Verde. ¿Casualidad? ¿Las únicas islas en medio del Atlántico en ese meridiano, del que se calcula una terna pitagórica respecto de la gran pirámide? ¿Cuales son las probabilidades de tal coincidencia? 
    [Nótese el uso de la jerga misteril para predisponer al lector]

    Lo cual nos lleva a la conclusión obvia de que esas islas son los restos de la Atlántida. Tras el cataclismo que la destruyó, algunos supervivientes llegaron al Nilo, donde en un último intento de hacer perdurar su cultura y conocimientos, construyeron la gran pirámide escondiendo en ella la localización exacta de la Atlántida y la fórmula de la Coca Cola. Y los egipiciós son sus tataranietos.
    [modo cachondeo=off]

    Y en realidad, existen dos meridianos más que cumplirían con el requisito de formar una terna pitagórica: son aquellos que se encuentran al Este y Oeste a 4224 km del meridiano de la gran pirámide. Con la ventaja de que cumplen con el teorema de pitágoras sin necesidad de hacer el baile de números mencionado en el punto 2. Un meridiano es el 74º 56' 24'' E, y el otro está en 12º 40' 19'' O. Seguro que alguien se puede inventar una razón para que ese meridiano sea especial.

    5. ¿Y EL TERCER NÚMERO, QUÉ?

    Entonces, el Dr. Pérez-Sánchez nos ha hecho calcular la distancia lineal de la gran pirámide al ecuador, y al meridiano que pasa por el Everest. Y de ahí se saca de la manga una relación matemática que implica un tercer número.

    ¿Y qué significa o representa este tercer número? Pues no lo sabemos, porque (afortunadamente) el Dr. Pérez-Sánchez no ha hecho intentos por saber qué significa. Simplemente se da por contento de que haya aparecido para darle un (presunto) sentido a los otros dos.

    Lo cual denota el esfuerzo realizado por suspender el pensamiento crítico. Una vez logrado el objetivo (encontrar una relación mágica) se olvida de entender qué es lo que significan los números que obtiene, de entender qué tipo de operaciones ha realizado con ellos y para qué las usa. Simplemente ha dado palos de ciego hasta encontrar cualquier cosa, sin saber qué estaba buscando.

    Como quien tira una caña al río, saca una bota y la exhibe sobre la chimenea.

    6. LO QUE MIDE UN METRO

    El último juego de trilero (aunque no menos importante) que quiero comentar es el hecho de haber usado kilómetros, unidad derivada de metro (1 km=1.000 m). Porque los egipcios no sabían lo que medía un metro. Muy a pesar del Dr. Sánchez-Pérez, que arregla el asunto diciendo que sí, que "codificaron" el metro en el diseño de la pirámide, siendo esta otra de las grandes proezas sus constructores: Tenemos que creer que los egipcios conocían lo que medía un metro varios miles de años antes de que se definiera por primera vez cuanto era la longitud de un metro. Más tarde, la oficina de pesos y medidas ha ido variando la definición, por lo que aunque un metro siempre ha medido un metro (por definición), un metro no ha medido siempre lo mismo.

    Sin embargo, reproducir los cálculos del Dr. Pérez-Sánchez en millas resultaría en un fracaso total en cuanto a sus conclusiones, gracias a la arbitrariedad que supone que el metro se haya impuesto como la unidad de medida del Sistema Internacional, frente a esos pérfidos y malvados individuos que prefieren medir en pulgadas, pies, yardas o millas... (sin contar con que además existen las millas terrestres y las millas náuticas)

    Como fracaso igualmente resultaría usar las unidades de medida que usaban los egipcios: dedos, palmos, y codos... y dentro del codo, también había para elegir. Intente el lector rehacer los cálculos anteriores en codos, kilocodos o megapalmos. Igual suena la flauta.

    En resumidas cuentas, este es un ejemplo de cómo una persona se ha dedicado durante 10 años a cambiar números de un sitio a otro números para llegar a resultados aparentemente sorprendentes, pero que en realidad carecen de ningún sentido. Jugar con la precisión, las unidades, la arbitrariedad, obviar el significado y lo que están describiendo los cálculos realizados... en definitiva, un trilero de las matemáticas. Y esto, por lo visto, merece una subvención del Ministerio de Educación y Cultura.

    Quizás debería dedicarme 10 años en buscar todos estos triles matemáticos de esta tesis. Visto lo visto, estoy seguro de que la Universidad de Politécnica de Barcelona me concedería un doctorado cum laude por ello.
  • Percha

    Las pirámides se construyeron para almacenar grano

    Fuente: Magonia

    Ben Carson, neurocirujano jubilado y candidato republicano a la Casa Blanca, cree que las pirámides de Egipto las construyó el patriarca bíblico José, hijo de Jacob, como almacenes de grano. Lo dijo en 1998 en una conferencia en una conferencia en la Universidad Andrews, adscrita a los Adventistas del Séptimo Día, y se ha reafirmado ahora en eso y en que algunos arqueólogos sostienen que las pirámides se levantaron con la ayuda de extraterrestres.

    La charla de Carson en la Universidad Andrews ha vuelto a ser actualidad después de que BuzzFeed rescató el miércoles el vídeo de la conferencia. “Mi teoría es que José construyó las pirámides para almacenar grano”, decía en 1998 el entonces médico en activo. José fue uno de los doce hijos de Jacob, según el Génesis, y un personaje legendario, según los historiadores. Carson añadió en su intervención  que “varios científicos han dicho: «Bueno, ya sabes que vinieron extraterrestres con en un conocimiento especial y así se hicieron”. Pero no es necesario ningún extraterretre cuando Dios está contigo». Tras la publicación del viejo vídeo, Carson se reafirmó en sus disparates en la CBS. “Todavía lo creo. Sí”, dijo.

    ¿Qué sentido tiene una construcción maciza para almacenar algo? Ninguno. ¿Qué pruebas históricas hay de que las pirámides las construyera José? Ninguna. ¿Qué pruebas hay de la existencia de José y de esclavos judios en Egipto? Ninguna. Lo que los arqueólogos saben, y hay que subrayar el saben, es que las pirámides se diseñaron como tumbas y que las levantaron los antiguos egipcios. No hay ningún historiador ni arqueólogo que sostenga que se hicieran con la ayuda de seres de otros mundos. Eso es lo que dicen vendedores de misterios como Erich von DänikenJuan José Benítez y Giorgio Tsoukalos, por citar tres autoridades en piramidiotologia.

    ‘La Contra’, con los ‘piramidiotaa’

    Casi en coincidencia con la recuperación de las disparatadas ideas del candidato republicano adventista, La Contra de La Vanguardia volvió a hacer publicidad el sábado –por segunda vez en tres años– a Miguel Pérez-Sánchez, un arquitecto barcelonés que dice que la Gran Pirámide estuvo coronada por una esfera, que se levantó en conmemoración del primer milenio del Diluvio Universal, que es “una especie de enciclopedia del saber de su tiempo” y que la altura de la estructura fue, original e intencionadamente, una milmillonésima parte de la distancia entre la Tierra y el Sol, entre otars muchas tonterías. El egiptólogo José Miguel Parra, autor del libro Las pirámides: historia, mito y realidad (2001), considera que la tesis de Pérez-Sánchez “no tiene desperdicio en cuanto a la cantidad de tonterías y sinsen..., casi ninguno de los cuales es original, por cierto”. “No da ni una. No hay nada de cierto en lo que dice Miquel Pérez-Sánchez”, coincide la también egiptóloga Mara Castillo Mallén.

    El arquitecto catalán ha reunido su colección de absurdos, equiparables a los de Carson, en su obra La Gran Pirámide, clau secreta del passat, por la que, presentada como tesis, obtuvo en 2012 un doctorado cum laude por la Universidad de Politécnica de Cataluña (.... La web en la que Pérez-Sánchez vende en español y troceada en diez volúmenes su tesis está subvencionada por el Ministerio de Cultura. En abril, la Universidad Politécnica de Madrid (UPM) y el Ateneo de esa ciudad apadrinaron la presentación de la obra en la capital de España y, en mayo,.el pseudohistoriador hizo lo propio en Sevilla en la Casa de la Ciencia del Consejo Superior de Investigaciones Ci....  ¿Caben mayores insultos a la ciencia, a la cultura?